Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
China Journal of Chinese Materia Medica ; (24): 1017-1023, 2022.
Article in Chinese | WPRIM | ID: wpr-928021

ABSTRACT

This study explored the protective effect of atractylenolide Ⅰ(AO-Ⅰ) against acetaminophen(APAP)-induced acute liver injury(ALI) in mice and its underlying mechanism. C57 BL/6 J mice were randomly divided into a control group, an APAP group(500 mg·kg~(-1)), a low-dose combination group(500 mg·kg~(-1) APAP + 60 mg·kg~(-1) AO-Ⅰ), and a high-dose combination group(500 mg·kg~(-1) APAP + 120 mg·kg~(-1) AO-Ⅰ). ALI was induced by intraperitoneal injection of APAP(500 mg·kg~(-1)). AO-Ⅰ by intragastric administration was performed 2 hours before APAP treatment, and the control group received the same dose of solvent by intragastric administration or intraperitoneal injection. The protective effect of AO-Ⅰ against APAP-induced ALI was evaluated by detecting alanine aminotransferase(ALT) and aspartate aminotransferase(AST) levels in the plasma and H&E staining in liver tissues of mice. The malondialdehyde(MDA) and glutathione(GSH) content and catalase(CAT) activity in mouse liver tissues were detected to evaluate the effect of AO-Ⅰ on APAP-induced oxidative stress in the liver. The proteins in the liver p38 mitogen-activated protein kinase(p38 MAPK), c-jun N-terminal kinase(JNK), and nuclear factor kappa-B p65(NF-κB p65) signaling pathways were measured by Western blot, and the liver inflammatory cytokines interleukin-1β(IL-1β) and interleukin-6(IL-6) were detected by real-time PCR. Compared with the APAP group, the combination groups showed reduced APAP-induced ALT level and liver MDA content, potentiated liver CAT activity, and elevated GSH content. Mechanistically, AO-Ⅰ treatment significantly inhibited APAP-up-regulated MAPK phosphorylation and NF-κB p65, and significantly reduced the transcriptional activities of IL-1β and IL-6, downstream targets of NF-κB p65. AO-Ⅰ can improve APAP-induced ALI and the underlying mechanism is related to the inhibition of the MAPK/NF-κB p65 signaling pathway in APAP-challenged mice.


Subject(s)
Animals , Mice , Acetaminophen/adverse effects , Chemical and Drug Induced Liver Injury/drug therapy , Lactones , NF-kappa B/metabolism , Sesquiterpenes , Signal Transduction
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 446-459, 2020.
Article in English | WPRIM | ID: wpr-827225

ABSTRACT

Dendrobium officinale Kimura et Migo (D. officinale) is a famous traditional Chinese medicine (TCM). A mixture of D. officinale and American ginseng has been shown to enhance cell-mediated immunity, humoral immunity, and monocyte/macrophage functions in mice. Here, the effects of a D. officinale and American ginseng mixture on the structure of gut microbial community in dogs were examined using high-throughput 16S rRNA gene amplicon sequencing. The data revealed that while the mixture did not change the diversity of gut microbial community significantly, differences among individuals were significantly reduced. Furthermore, the mixture-responsive operational taxonomic units (OTUs) exhibited a phase-dependent expression pattern. Fifty-five OTUs were found to exhibit a mixture-induced expression pattern, among which one third were short-chain fatty acid (SCFA)-producing genera and the others were probiotic genera included Lactobacillus spp., Sutterella, Alistipes, Anaerovorax, Bilophila, Coprococcus, Gordonibacter, Oscillibacter, among others. By contrast, 36% of the OTUs exhibiting a mixture-repressed expression pattern were disease-associated microorganisms, and six genera, namely Actinomyces, Escherichia/Shigella, Fusobacterium, Slackia, Streptococcus and Solobacterium, were associated with cancer. In addition, five genera were closely associated with diabetes, namely Collinsella, Rothia, Howardella, Slackia and Intestinibacter. Our results indicate that this D. officinale and American ginseng mixture may be used as a prebiotic agent to enhance SCFA-producing genera and prevent gut dysbiosis.

3.
China Journal of Chinese Materia Medica ; (24): 1862-1868, 2019.
Article in Chinese | WPRIM | ID: wpr-773155

ABSTRACT

Tanshinone Ⅱ_A( Tan Ⅱ_A),the liposoluble constituents of Salvia miltiorrhiza,can not only ameliorate the lipidic metabolism and decrease the concentration of lipid peroxidation,but also resist oxidation damage,scavenge free radicals and control inflammation,with a protective effect on prognosis after liver function impairment. Therefore,the studies on the exact mechanism of Tan Ⅱ_A in protecting the liver can provide important theoretical and experimental basis for the prevention and treatment effect of Tan Ⅱ_A for liver injury. In the present study,the protective effects and mechanism of Tan Ⅱ_A on 4-hydroxynonenal( 4-HNE)-induced liver injury were investigated in vitro. Normal liver tissues NCTC 1469 cells were used to induce hepatocytes oxidative damages by 4-HNE treatment. The protective effect of Tan Ⅱ_A on hepatocytes oxidative damages was detected by release amount of lactate dehydrogenase( LDH) analysis and hoechst staining. The protein expression changes of peroxisome proliferator-activated receptor α( PPARα) and peroxisome proliferator response element( PPRE) were analyzed by Western blot analysis in NCTC 1469 cells before and after Tan Ⅱ_A treatment. The gene expression changes of fatty aldehyde dehydrogenase( FALDH) were analyzed by Real-time polymerase chain reaction( PCR) analysis. The results showed that 4-HNE increased the release amount of LDH,lowered the cell viability of NCTC 1469 cells,and Tan Ⅱ_A reversed 4-HNE-induced hepatocyte damage. Western blot analysis and RT-PCR analysis results showed that 4-HNE decreased the expression of PPARα and FALDH and increased the expression of 4-HNE. However,the expression of PPARα and FALDH were increased significantly and the expression of 4-HNE was decreased obviously after Tan Ⅱ_A treatment. This study confirmed that the curative effect of Tan Ⅱ_A was obvious on hepatocytes damage,and the mechanism may be associated with activating PPARα and FALDH expression as well as scavenging 4-HNE.


Subject(s)
Animals , Mice , Aldehyde Oxidoreductases , Metabolism , Aldehydes , Cell Line , Abietanes , Pharmacology , Hepatocytes , Lipid Peroxidation , Oxidative Stress , PPAR alpha , Metabolism
4.
Chinese Journal of Hepatology ; (12): 747-752, 2013.
Article in Chinese | WPRIM | ID: wpr-277994

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effects and mechanism of intracellular 4-hydroxynonenal (4-HNE) accumulation on tumor necrosis factor (TNF)-induced hepatotoxicity in alcoholic liver disease (ALD).</p><p><b>METHODS</b>An ALD model was established in male C57BL/6 mice (6-8 weeks old) by feeding an ethanol-containing diet for 5 weeks; mice given regular (non-ethanol) diet served as controls. ALD-related changes in 4-HNE and TNF levels were detected by western blotting. The underlying mechanisms of this molecular effect were examined by pre-treating HepG2 cells with 4-HNE followed by exposure to various concentrations of TNF. Effects on cell death were evaluated by MTT assay. Effects on TNF-mediated upstream factors' expression were detected by ELISA, western blotting, and real-time PCR. Effects on the TNF-induced inhibitor of NF-kB (IkBa) activity (phosphorylation status) and its formation of adducts were detected by western blotting and immunoprecipitation.</p><p><b>RESULTS</b>ALD mice showed increased hepatic 4-HNE and TNF levels, and the increases were associated with extent of liver injury. Cell culture studies revealed that 4-HNE, at non-toxic concentrations, sensitized hepatocytes to TNF killing, which was associated with suppressed NF-kB trans activity. Furthermore, 4-HNE prevented phosphorylation of IkBa without affecting upstream IkB kinase activity. The ALD-enhanced 4-HNE content was found to associated with increased formation of 4-HNE-IkBa adduction for both the 4-HNE - treated hepatocytes in culture and in the livers of ALD mice.</p><p><b>CONCLUSION</b>Alcohol-induced increase in 4-HNE accumulation represents a potent and clinically relevant mechanism of sensitizing hepatocytes to TNF-induced toxicity. These data support the notion that decreasing or eliminating accumulated intracellular 4-HNE can serve as a potential therapeutic option for ALD.</p>


Subject(s)
Animals , Humans , Male , Mice , Aldehydes , Metabolism , Ethanol , Toxicity , Hep G2 Cells , I-kappa B Proteins , Metabolism , Liver Diseases, Alcoholic , Metabolism , Mice, Inbred C57BL , NF-kappa B , Metabolism , Signal Transduction , Tumor Necrosis Factor-alpha , Metabolism
5.
Chinese journal of integrative medicine ; (12): 71-75, 2008.
Article in English | WPRIM | ID: wpr-236289

ABSTRACT

Hyperlipidemia (HLP) is the No.1 risk factor for patients with atherosclerosis (AS) and is directly related to the occurrence of coronary artery disease (CAD) and cerebrovascular disease. Therefore, prevention and treatment of AS is of great importance and of practical significance in controlling the incidence and mortality of CAD. With its peculiar syndrome-dependent therapy, traditional Chinese medicine (TCM) has accumulated abundant practical experiences in this field and good clinical effects have been achieved. Chinese herbal medicine, with its particularly unique advantages and high potentials yet to be tapped, displays its huge strength in HLP prevention and treatment. The progress of studies concerning prevention and treatment of HLP by Chinese herbal medicines, in the form of monomers or compound recipes, is reviewed in this paper.


Subject(s)
Humans , Cholesterol , Metabolism , Drugs, Chinese Herbal , Therapeutic Uses , Hyperlipidemias , Drug Therapy , Lipid Metabolism , Lipid Peroxidation , Receptors, LDL
SELECTION OF CITATIONS
SEARCH DETAIL